आर

2010-10-02 12 views
6

में दो चरण कम से कम वर्ग मैं आर में दो चरण की जांच कम से कम वर्ग प्रतिगमन चलाने के लिए चाहता हूं। क्या कोई जानता है कि यह कैसे करें? क्या वहां कोई पैकेज है? मुझे पता है कि स्टाटा का उपयोग करके इसे करना संभव है, इसलिए मुझे लगता है कि आरआर

उत्तर

8

जब आप 'दो-चरण-प्रोबिट-कम-स्क्वायर' कहते हैं तो आप अधिक विशिष्ट होना चाहेंगे। चूंकि आप एक स्टाटा प्रोग्राम का संदर्भ लेते हैं जो इसे लागू करता है, मुझे लगता है कि आप सीडीएसआईएमईक्यू पैकेज के बारे में बात कर रहे हैं, जो हेकिट मॉडल (ए.के.ए. सामान्यीकृत टोबीट, ए.के.ए. टोबिट टाइप II मॉडल इत्यादि) के लिए अमेमिया (1 9 78) प्रक्रिया लागू करता है। जैसा कि ग्रांट ने कहा, सिस्टमफिट आपके लिए एक टोबीट करेगा, लेकिन दो समीकरणों के साथ नहीं। माइक्रोन पैकेज में हेकिट था (लेकिन पैकेज इतनी बार विभाजित हुआ है कि मुझे नहीं पता कि यह कहां है)।

अगर आप चाहते हैं क्या CDSIMEQ करता है, यह आसानी से आर में लागू किया जा सकता है मैं एक समारोह replicates कि CDSIMEQ लिखा है:

tspls <- function(formula1, formula2, data) { 
    # The Continous model 
    mf1 <- model.frame(formula1, data) 
    y1 <- model.response(mf1) 
    x1 <- model.matrix(attr(mf1, "terms"), mf1) 

    # The dicontionous model 
    mf2 <- model.frame(formula2, data) 
    y2 <- model.response(mf2) 
    x2 <- model.matrix(attr(mf2, "terms"), mf2) 

    # The matrix of all the exogenous variables 
    X <- cbind(x1, x2) 
    X <- X[, unique(colnames(X))] 

    J1 <- matrix(0, nrow = ncol(X), ncol = ncol(x1)) 
    J2 <- matrix(0, nrow = ncol(X), ncol = ncol(x2)) 
    for (i in 1:ncol(x1)) J1[match(colnames(x1)[i], colnames(X)), i] <- 1 
    for (i in 1:ncol(x2)) J2[match(colnames(x2)[i], colnames(X)), i] <- 1 

    # Step 1: 
    cat("\n\tNOW THE FIRST STAGE REGRESSION") 
    m1 <- lm(y1 ~ X - 1) 
    m2 <- glm(y2 ~ X - 1, family = binomial(link = "probit")) 
    print(summary(m1)) 
    print(summary(m2)) 

    yhat1 <- m1$fitted.values 
    yhat2 <- X %*% coef(m2) 

    PI1 <- m1$coefficients 
    PI2 <- m2$coefficients 
    V0 <- vcov(m2) 
    sigma1sq <- sum(m1$residuals^2)/m1$df.residual 
    sigma12 <- 1/length(y2) * sum(y2 * m1$residuals/dnorm(yhat2)) 

    # Step 2: 
    cat("\n\tNOW THE SECOND STAGE REGRESSION WITH INSTRUMENTS") 

    m1 <- lm(y1 ~ yhat2 + x1 - 1) 
    m2 <- glm(y2 ~ yhat1 + x2 - 1, family = binomial(link = "probit")) 
    sm1 <- summary(m1) 
    sm2 <- summary(m2) 
    print(sm1) 
    print(sm2) 

    # Step 3: 
    cat("\tNOW THE SECOND STAGE REGRESSION WITH CORRECTED STANDARD ERRORS\n\n") 
    gamma1 <- m1$coefficients[1] 
    gamma2 <- m2$coefficients[1] 

    cc <- sigma1sq - 2 * gamma1 * sigma12 
    dd <- gamma2^2 * sigma1sq - 2 * gamma2 * sigma12 
    H <- cbind(PI2, J1) 
    G <- cbind(PI1, J2) 

    XX <- crossprod(X)       # X'X 
    HXXH <- solve(t(H) %*% XX %*% H)   # (H'X'XH)^(-1) 
    HXXVXXH <- t(H) %*% XX %*% V0 %*% XX %*% H # H'X'V0X'XH 
    Valpha1 <- cc * HXXH + gamma1^2 * HXXH %*% HXXVXXH %*% HXXH 

    GV <- t(G) %*% solve(V0) # G'V0^(-1) 
    GVG <- solve(GV %*% G)  # (G'V0^(-1)G)^(-1) 
    Valpha2 <- GVG + dd * GVG %*% GV %*% solve(XX) %*% solve(V0) %*% G %*% GVG 

    ans1 <- coef(sm1) 
    ans2 <- coef(sm2) 

    ans1[,2] <- sqrt(diag(Valpha1)) 
    ans2[,2] <- sqrt(diag(Valpha2)) 
    ans1[,3] <- ans1[,1]/ans1[,2] 
    ans2[,3] <- ans2[,1]/ans2[,2] 
    ans1[,4] <- 2 * pt(abs(ans1[,3]), m1$df.residual, lower.tail = FALSE) 
    ans2[,4] <- 2 * pnorm(abs(ans2[,3]), lower.tail = FALSE) 

    cat("Continuous:\n") 
    print(ans1) 
    cat("Dichotomous:\n") 
    print(ans2) 
} 

तुलना के लिए, हम नमूने में CDSIMEQ के लेखक से दोहराने कर सकते हैं उनके article about the package

> library(foreign) 
> cdsimeq <- read.dta("http://www.stata-journal.com/software/sj3-2/st0038/cdsimeq.dta") 
> tspls(continuous ~ exog3 + exog2 + exog1 + exog4, 
+  dichotomous ~ exog1 + exog2 + exog5 + exog6 + exog7, 
+  data = cdsimeq) 

     NOW THE FIRST STAGE REGRESSION 
Call: 
lm(formula = y1 ~ X - 1) 

Residuals: 
     Min  1Q Median  3Q  Max 
-1.885921 -0.438579 -0.006262 0.432156 2.133738 

Coefficients: 
       Estimate Std. Error t value Pr(>|t|)  
X(Intercept) 0.010752 0.020620 0.521 0.602187  
Xexog3  0.158469 0.021862 7.249 8.46e-13 *** 
Xexog2  -0.009669 0.021666 -0.446 0.655488  
Xexog1  0.159955 0.021260 7.524 1.19e-13 *** 
Xexog4  0.316575 0.022456 14.097 < 2e-16 *** 
Xexog5  0.497207 0.021356 23.282 < 2e-16 *** 
Xexog6  -0.078017 0.021755 -3.586 0.000352 *** 
Xexog7  0.161177 0.022103 7.292 6.23e-13 *** 
--- 
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 0.6488 on 992 degrees of freedom 
Multiple R-squared: 0.5972,  Adjusted R-squared: 0.594 
F-statistic: 183.9 on 8 and 992 DF, p-value: < 2.2e-16 


Call: 
glm(formula = y2 ~ X - 1, family = binomial(link = "probit")) 

Deviance Residuals: 
    Min  1Q Median  3Q  Max 
-2.49531 -0.59244 0.01983 0.59708 2.41810 

Coefficients: 
      Estimate Std. Error z value Pr(>|z|)  
X(Intercept) 0.08352 0.05280 1.582 0.113692  
Xexog3  0.21345 0.05678 3.759 0.000170 *** 
Xexog2  0.21131 0.05471 3.862 0.000112 *** 
Xexog1  0.45591 0.06023 7.570 3.75e-14 *** 
Xexog4  0.39031 0.06173 6.322 2.57e-10 *** 
Xexog5  0.75955 0.06427 11.818 < 2e-16 *** 
Xexog6  0.85461 0.06831 12.510 < 2e-16 *** 
Xexog7  -0.16691 0.05653 -2.953 0.003152 ** 
--- 
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

(Dispersion parameter for binomial family taken to be 1) 

    Null deviance: 1386.29 on 1000 degrees of freedom 
Residual deviance: 754.14 on 992 degrees of freedom 
AIC: 770.14 

Number of Fisher Scoring iterations: 6 


     NOW THE SECOND STAGE REGRESSION WITH INSTRUMENTS 
Call: 
lm(formula = y1 ~ yhat2 + x1 - 1) 

Residuals: 
    Min  1Q Median  3Q  Max 
-2.32152 -0.53160 0.04886 0.53502 2.44818 

Coefficients: 
       Estimate Std. Error t value Pr(>|t|)  
yhat2   0.257592 0.021451 12.009 <2e-16 *** 
x1(Intercept) 0.012185 0.024809 0.491 0.623  
x1exog3  0.042520 0.026735 1.590 0.112  
x1exog2  0.011854 0.026723 0.444 0.657  
x1exog1  0.007773 0.028217 0.275 0.783  
x1exog4  0.318636 0.028311 11.255 <2e-16 *** 
--- 
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 0.7803 on 994 degrees of freedom 
Multiple R-squared: 0.4163,  Adjusted R-squared: 0.4128 
F-statistic: 118.2 on 6 and 994 DF, p-value: < 2.2e-16 


Call: 
glm(formula = y2 ~ yhat1 + x2 - 1, family = binomial(link = "probit")) 

Deviance Residuals: 
    Min  1Q Median  3Q  Max 
-2.49610 -0.58595 0.01969 0.59857 2.41281 

Coefficients: 
       Estimate Std. Error z value Pr(>|z|)  
yhat1   1.26287 0.16061 7.863 3.75e-15 *** 
x2(Intercept) 0.07080 0.05276 1.342 0.179654  
x2exog1  0.25093 0.06466 3.880 0.000104 *** 
x2exog2  0.22604 0.05389 4.194 2.74e-05 *** 
x2exog5  0.12912 0.09510 1.358 0.174544  
x2exog6  0.95609 0.07172 13.331 < 2e-16 *** 
x2exog7  -0.37128 0.06759 -5.493 3.94e-08 *** 
--- 
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

(Dispersion parameter for binomial family taken to be 1) 

    Null deviance: 1386.29 on 1000 degrees of freedom 
Residual deviance: 754.21 on 993 degrees of freedom 
AIC: 768.21 

Number of Fisher Scoring iterations: 6 

     NOW THE SECOND STAGE REGRESSION WITH CORRECTED STANDARD ERRORS 

Continuous: 
       Estimate Std. Error t value Pr(>|t|) 
yhat2   0.25759209 0.1043073 2.46955009 0.01369540 
x1(Intercept) 0.01218500 0.1198713 0.10165068 0.91905445 
x1exog3  0.04252006 0.1291588 0.32920764 0.74206810 
x1exog2  0.01185438 0.1290754 0.09184073 0.92684309 
x1exog1  0.00777347 0.1363643 0.05700519 0.95455252 
x1exog4  0.31863627 0.1367881 2.32941597 0.02003661 
Dichotomous: 
       Estimate Std. Error z value  Pr(>|z|) 
yhat1   1.26286574 0.7395166 1.7076909 0.0876937093 
x2(Intercept) 0.07079775 0.2666447 0.2655134 0.7906139867 
x2exog1  0.25092561 0.3126763 0.8025092 0.4222584495 
x2exog2  0.22603717 0.2739307 0.8251618 0.4092797527 
x2exog5  0.12911922 0.4822986 0.2677163 0.7889176766 
x2exog6  0.95609385 0.2823662 3.3860070 0.0007091758 
x2exog7  -0.37128221 0.3265478 -1.1369920 0.2555416141 
2

के साथ ऐसा करना संभव है, आर में दो राज्य कम से कम वर्गों के लिए कई पैकेज उपलब्ध हैं। यहाँ कुछ

  1. sem हैं: Two-Stage Least Squares
  2. Zelig: लिंक हटा दिया, अब कार्यात्मक (28.07.11)

मुझे पता है कि अगर इन अपने उद्देश्य को पूरा करते हैं।

+0

धन्यवाद, मैं इसे आज़माउंगा। ऐसा लगता है कि मेरी जरूरतों को पूरा करता है। –

2

सिस्टमfit यह भी चाल करेगा।